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Introduction  

As part of a pilot study of water quality forecasting, researchers in our lab at Virginia Tech 
are implementing the General Lake Model (GLM) to forecast meteorological variables related to 
water quality at Falling Creek Reservoir, Virginia. Lab members use the GLM, a one-dimensional 
hydrodynamic lake model (Hipsey et al., 2017) to make daily forecasts of water temperature and 
the likelihood of lake turnover, both of which relate to the concentration and distribution of 
contaminants. The lab plans to additionally forecast algae populations in the future.   

The GLM requires input data for the environmental drivers of lake processes which we can 
commonly measure, often continuously. These include meteorological variables such as ambient 
air temperature, incoming surface shortwave and longwave radiation, average wind speed, and 
relative humidity. Past site measurements and future meteorological forecasts drive the model and 
forecast water temperature at the same depths at which physical samples are taken. Falling Creek 
Reservoir is equipped with sensors that measure local meteorology precisely and frequently. In 
contrast, the meteorological forecasts used to drive the model in simulations of the future are at a 
coarse resolution, and are not specific to the study site. To maximize the success of environmental 
forecasting, input data should be as accurate as possible and any uncertainties in the input data 
should be quantified. The currently available meteorological forecasts do not necessarily meet 
these criteria. To address this issue, I developed and implemented a workflow to spatially and 
temporally downscale 16-day NOAA GEFS meteorological forecasts to the specific site, Falling 
Creek reservoir.  
   
Methods  
Overview  

Using site-specific observational data and coarse-scale GEFS forecasts, I calculated model 
coefficients for the linear relationship between the observational and forecast data for five 
meteorological variables: air temperature, relative humidity, wind speed, downward shortwave 
radiation flux, and downward longwave radiation flux. I later used these relationships later to 
spatially downscale forecasts. Next, I temporally downscaled the training data from 6-hourly to 
hourly and calculated the total standard error resulting from the spatial and temporal downscaling 
processes. The last two weeks of data were withheld from the training dataset, and I instead 
downscaled forecasts over this time period. I then compared the resulting downscaled forecasts 



and the original forecasts prior to downscaling to observational data to assess whether downscaling 
made the forecasts more accurate.   

 
Data  

Observational data was retrieved at the minute-scale from an on-site meteorological station 
established by researchers starting in late April of 2018. Table 1 shows the instruments associated 
with each meteorology variable of interest. Outputs from the NOAA Global Ensemble Forecasting 
System (GEFS) model were used as the meteorology forecasts. The GEFS forecasts have a spatial 
resolution of 1 degree latitude by 1 degree longitude and a temporal resolution of 6 hours. Each 
forecast predicts 16 days into the future and is comprised of 21 ensemble members representing 
uncertainty in starting conditions. The NOAA forecast represents meteorological variables which 
are fluxes, shortwave and longwave radiation, as averages over the previous 6 hours, and states 
variables as predictions at 6-hour intervals. Because the least uncertainty exists at the beginning of 
the 16-day forecasts, only the first 24 hours of each GEFS forecast were included in the training 
dataset.   

  
Table 1. Utilized sensor capabilities  

On-Site Sensors  Meteorological variable  Precision  

HC2S3 Temperature and Relative 
Humidity Probe  

Air Temperature at 2m  -50 - 100℃ ± 0.1  

Relative Humidity at 2m  0 - 100% ± 1.3  

Wind Monitor  Wind Speed at 10m  0 - 100 m/s ± 0.3  

Hukseflux Net Radiation  

Surface Downward Shortwave 
Radiation Flux  0 - 2000 W/m² ± 10%  

Surface Downward Longwave 
Radiation Flux  0 - 1000 W/m² ± 10%  

  
Parameter Fitting  

I fit the model coefficients for spatial downscaling according to the linear relationship 
between observational data and forecasts in the training dataset. Although meteorological variables 
are required at hourly resolution for the GLM model, I started by aggregating the minute-scale 
observational data and 6-hourly GEFS forecasts to the daily scale. I did this because there was a 
greater signal in the relationship between observations and forecasts at the daily scale than subdaily 
scale, where observational noise was high. Using linear regression, I related the observations and 
forecasts for each of the meteorological variables. I applied a linear transformation to each 
meteorological variable of the training data to reduce bias in the forecasts (i.e., the debias step).   



After spatially debiasing, I downscaled the forecasts from daily resolution to hourly 
resolution. To temporally downscale shortwave radiation, I redistributed the daily downscaled 
value according to a solar geometry function (Dietze, 2017) that incorporates site-specific diel and 
seasonal solar patterns. To downscale air temperature, relative humidity, and average wind speed, 
I started by redistributing the spatially downscaled daily average according to the original pattern 
in the original GEFS forecasts. I did this by calculating the relative difference between each 
original 6-hourly NOAA forecast and the average for that day, then added that value to the spatially 
debiased daily averages. I did this to retain some of the information from the sub-daily forecast 
values, while still preserving the daily average of the spatially debiased values. After redistributing 
to 6-hourly values, I interpolated to hourly resolution the monotone piecewise cubic interpolation 
method. Unlike the other metrics, I did not downscale longwave radiation to the hourly resolution. 
Because longwave radiation is a flux, not a state, the information from GEFS forecasts represents 
an average of the 6-hour period. Without a known relationship to redistribute longwave across the 
day, as was the case with shortwave, the 6-hourly average is insufficient information to temporally 
downscale to an hourly resolution. For these reasons, longwave is left at the daily resolution at this 
time. The methods of temporal downscaling are summarized in Table 2.   
   

Table 2. Temporal Downscaling by meteorological variable  

Meteorological variable  Method of temporal downscaling  

Air Temperature at 2m  Interpolation  

Relative Humidity at 2m  Interpolation  

Wind Speed at 10m  Interpolation  

Shortwave Radiation Flux  Solar Geometry  

Longwave Radiation Flux  None  

  
 After downscaling the training data, I calculated the standard deviation of the residuals from linear 
regression between observational data and forecast data for later use as a downscaling noise 
addition term. For longwave, I calculated this after the spatial debiasing step because that was the 
last step. For the other meteorological variables, I calculated this after the spatial and temporal 
downscaling steps were complete. The steps for the overall parameter fitting process are 
summarized (figure 1).   
  
  
  
  



 
Figure 1. Flowchart of parameter-fitting steps.  

 
 Downscaling Future Forecasts  
  After fitting the model coefficients, I downscaled a 16-day GEFS forecast over the period 
of time withheld from the training dataset, according to the following steps. As in the model fitting 
process, I aggregated the forecasts to daily resolution. Then, I used the saved model coefficients 
from the spatial downscaling of the training data to spatially downscale the forecasts at the daily 
resolution. Next, I created a version of the ensemble members with added random noise sampled 
from a normal distribution with error equal to the standard error previously calculated for each 
meteorological variable. I then temporally downscaled these ensemble members according to the 
methods previously described in the fitting process.  
    
Evaluation  

To evaluate the downscaling process, I compared two weeks of downscaled forecasts and 
two weeks of non-downscaled forecasts against observational data. An “out-of-the-box” 
implementation of the GEFS forecasts which is the current form of input in the lake water quality 
forecasting served as a control to compare the downscaled forecasts against. In this “non-
downscaled” version, 6-hourly GEFS forecasts of physical states were linearly interpolated to the 
hourly scale. The 6-hourly longwave and shortwave values were repeated over the preceding 6 
hours that the forecast is associated with.   

Next, I performed steps to evaluate the downscaling process. I calculated R2 values for the 
linear relationship between forecasts and observations to determine the strength these relationships 
by variable. I calculated the average difference between downscaled forecasts and observational 



data for each meteorological variable to determine average bias in downscaled forecasts. To assess 
the effectiveness of the confidence interval created by forecast ensemble members, I calculated the 
percentage of observations that fell within the bounds of forecasted values. I evaluated the 
performance of the downscaling in these three ways using a series of 1-day forecasts spanning 14 
days. I downscaled only the first day of each GEFS to evaluate the downscaling process, because 
error in short-term forecasts are more reflective of the error from downscaling than long-term 
forecasts, which have greater propagation of GEFS noise through time.   
  
Results  

The results are broken into four categories: (1) model parameterization (2) relatedness of 
downscaled forecasts and observations, (3) the bias in the forecasts, and (4) the representation of 
error in the forecasts.   

  
Model Parameterization  

The results of the parameter fitting process are shown in Table 3 below. The slope, 
intercept, and R 2 of the linear spatial debiasing at the daily resolution are shown for each 
meteorological variable. The R 2 for air temperature, shortwave radiation, and longwave 
radiation were particularly high at the daily resolution. While the R 2 for air temperature, relative 
humidity, and wind speed all decreased by more than 0.1, the R 2 for shortwave radiation 
remained nearly the same after temporal downscaling. Wind speed forecasts were poorly 
correlated with observations at the daily resolution and especially at after temporal downscaling 
to hourly resolution. The standard deviation of residuals from downscaling shortwave radiation 
were particularly high.  

Table 3. Downscaling parameter fitting results  

  Slope  Intercept  R2 after daily 
spatial debiasing  

R2  after spatial &  
temporal downscaling  

Standard deviation of 
residuals after downscaling  

Air Temperature  0.96  13.1  0.95  0.78  3.29  

Relative 
Humidity  1.08  -8.3  0.62  0.51  13.1  

Wind Speed  0.53  0.67  0.43  0.14  1.13  

Shortwave 
Radiation  0.78  6.18  0.82  0.78  129  

Longwave  
Radiation  1.00  26.4  0.94  NA  10.6  

  



Correlation between Forecasts and Observations  
The R-squared values in Table 4 describe the strength of the linear relationships between 

the mean downscaled value and the site observations at each time step for two weeks of 1-day 
forecasts. The “not downscaled” scenario represents the out-of-the-box implementation of the 
GEFS forecasts we currently use in the GLM, while the downscaled version represents results after 
spatial and temporal downscaling. Downscaling improved the correlation between forecasts and 
observations for all meteorological variables except wind speed. The improvement in shortwave 
radiation forecast skill was quite drastic, increasing from an R2 of 0.19 to an R2 of 0.88. A 
scatterplot comparing the downscaled ensemble averages against the site observations is shown 
(figure 3) to provide an example of a visual representation of the correlation. Scatterplots of the 
remaining meteorological variables are shown in figure 1 of the appendix.   

  
Table 4. Mean R² values of hourly comparison, first day of forecasts  

  Air Temperature  Shortwave 
Radiation  

Relative 
Humidity  Wind Speed  

Not downscaled  0.28  0.19  0.23  0.20  

Downscaled  0.48  0.88  0.48  0.13  

  
  

  
Figure 3. Comparison between downscaled predictions and 
 observations of air temperature at 2m at equal time.  

  



Comparison of Mean Error  
Another important factor when considering the performance of the downscaling process is 

the bias present in the results. The average difference between forecasts and observations are 
shown in Table 5 for the downscaled and “not downscaled” scenarios. A value of 0 would imply 
that there is no overall bias in the forecasts, while progressively higher values indicate increased 
bias. As expected, the average magnitude of bias decreased for each of the meteorological variables 
after downscaling. The decrease in bias of temperature, shortwave radiation, and longwave 
radiation were quite substantial, decreasing from an average bias of 2.44°C to 0.64°C, 25.2 W/m² 
to 3.9 W/m², and -34.0 W/m² to -5.6 W/m², respectively.   
  

Table 5. Average of forecast error (forecast minus observations)  

  Air 
Temperature  

Shortwave 
Radiation  

Relative 
Humidity  Wind Speed  Longwave 

Radiation  

Not downscaled  -2.44°C  25.2 W/m²  10.7%  0.48 m/s  -34.0 W/m²  

Downscaled  0.64°C  3.9 W/m²  7.8%  -0.11 m/s  -5.6 W/m²  

  
Assessment of “Confidence Intervals” of Ensembles  

The last form of evaluation of the downscaling process I used was to consider the accuracy 
of the confidence interval of the forecasts, or the spread between the predictions of all the ensemble 
members. If the ensembles are truly representative of uncertainty in the forecasts, it would be 
expected that about 90% of observations fall within the middle 90% of ensemble members, and 
nearly 100% of observations would fall within the outer limits of the ensemble members. Table 6 
summarizes the percentage of observations that fall within the total spread of ensemble members 
across all time steps from each of the repeated 1-day forecasts. The range of downscaled air 
temperature and wind speed ensemble members contained about 90% of hourly observations, 
while the ensemble members of shortwave radiation about 80% of the observations. All 
downscaled meteorological variables improved the representation of observed conditions 
compared to the non-downscaled scenario.  
  

Table 6. Percentage of observations contained within range of ensembles  

  Air Temperature  Shortwave 
Radiation  

Relative 
Humidity  Wind Speed  Longwave 

Radiation  

Not downscaled   18.1%   26.7%   8.5%   22.7%  17.1%  

Downscaled   97.2%   82.2%   92.3%  98.8%  86.2%  

  
The downscaled ensemble for air temperature and shortwave are shown (figure 4). The 

ensemble members of temperature and shortwave both cover a relatively large range. Some 



shortwave ensemble members reach values greater than 1,500 W/m² which are not feasible. 
Representations of the remaining meteorological variables are shown (Appendix, figures 2-4).   

  

 
Figure 4. Observed air temperature at 2 meters and 1-day predicted forecasts over a late-fall 14-

day period (left). Observed shortwave radiation flux and 1-day predicted forecasts (right).  
  
  
Discussion 

Overall, this downscaling process substantially improved the representation of 
meteorological forecasts for use in the GLM at Falling Creek Reservoir. The correlation between 
forecasts and observations was strengthened for air temperature, shortwave radiation, and relative 
humidity when spatially and temporally downscaled. There was not a strong relationship between 
forecasted average wind speed and downscaled average wind speed, likely because wind speed 
behaves more stochastically than the other variables. The downscaling process reduced the bias in 
forecasts for all variables, which an important result, because bias in the meteorological input data 
could cause bias in the GLM output. The noise addition step should be refined because some 
ensemble members reach unfeasible values, as is the case for shortwave radiation flux.   

Now that we have developed the general workflow for the downscaling process, future 
work can further improve our framework and its results. For all meteorological variables, we used 
a simple linear regression for spatial downscaling. Researchers have successfully implemented 
other forms of statistical downscaling in other studies such as canonical correlation analysis and 
even artificial neural networks (Deka, 2017). One benefit of our approach is that it is highly 
flexible, in addition to being relatively accurate. Beyond the linear model, different methods of 
spatial downscaling are available, and an evaluation process can be helpful to identify what works 
best for each meteorological variable.   

In addition to adapting the downscaling model, we can use more informed methods of noise 
addition. Currently, we add random noise independently for each meteorological variable. 



However, there is known covariance between meteorological variables. For example, unexpected 
cloudiness would cause a decrease in both shortwave radiation and air temperature. If we can 
incorporate the covariance between meteorological variables, we could account for such 
circumstances and provide ensemble members that represent more realistic variation among 
meteorological variables.   

While there are ideas for improvement, our downscaling process has already shown 
substantial improvement over the non-downscaled option. Future work could further improve 
accuracy and robustness of the downscaling process. Once integrated into the water quality 
forecasting project, more analysis should be done to further quantify the effect of downscaling 
meteorology forecasts in the water quality forecasting framework.  
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Appendix 
  

  
Figure 1. Comparison between downscaled predictions and  

observations of additional meteorological variables at equal time.  
  
  

  
  
  



  
Figure 2. Observed relative humidity at 2 meters and 1-day predicted forecasts.  

  

  
Figure 3. Observed wind speed at 10 meters and 1-day predicted forecasts.  



  
Figure 4. Observed longwave radiation flux and 1-day predicted forecasts.  

  
  
Git Repository: 
https://github.com/EcoDynForecast/NOAA_download_downscale  


